The Report Committee for You Wang
Certifies that this is the approved version of the following Report:

Estimating Capillary Pressure From NMR Measurements
Using a Pore-Size-Dependent Fluid Substitution Method

APPROVED BY
SUPERVISING COMMITTEE:

Carlos Torres-Verdín, Supervisor

Zoya Heidari
Estimating Capillary Pressure From NMR Measurements
Using a Pore-Size-Dependent Fluid Substitution Method

by

You Wang

Report
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science in Engineering

The University of Texas at Austin
May 2019
Dedication

To my parents and grandparents for their love and support.
Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Carlos Torres-Verdín for his guidance and support. It is such an excellent experience to work in his group that I met many talented people. Profound gratitude goes to Dr. David Medillín for his guidance on the research and lab work. I am really indebted to him for helping me with every detail in my research. I also would like to thank Dr. Zoya Heidari for serving on my committee and Dr. Hugh Daigle for the access to the lab and NMR machine.

Thanks to Reynaldo Casanova for his administrative support. Additionally, I am appreciative to my peers in the research group. They are always willing to help and give suggestions. Special mention goes to Joshua Christopher Bautista-Anguiano for his support on experiments, and Mohammed Albusairi for his suggestions.

Finally, thanks go to my parents and grandparents for their unbelievable support.
Abstract

Estimating Capillary Pressure From NMR Measurements Using a Pore-Size-Dependent Fluid Substitution Method

You Wang, M.S.E
The University of Texas at Austin, 2019

Supervisor: Carlos Torres-Verdin

This report introduces a workflow to calculate capillary pressure curves from NMR transverse relaxation time (T_2) distributions of partially hydrocarbon-saturated measurements. First, a pore-size-dependent fluid-substitution (PSDFS) joint inversion method is developed to correct T_2 distributions for hydrocarbon effects in partially hydrocarbon-saturated rocks. A PSDFS joint inversion on the T_2 distributions of samples at different hydrocarbon saturations is used to estimate input parameters for fluid substitution and to reconstruct the fully water-saturated T_2 distribution. Next, the T_2 distribution of the fully water saturated sample is converted to a pore-size distribution using an estimated surface relaxivity. Finally, assuming a linear relationship between pore and throat size distributions, the saturation-dependent capillary pressure curve can be estimated using a triangular tube model.

The PSDFS joint inversion is validated on NMR measurements of Berea sandstone samples with different values of hydrocarbon saturation. The feasibility of our joint inversion method is confirmed by comparing the calculated fully water-saturated T_2...
distribution to the T_2 distribution of the measured fully water-saturated rock sample. The capillary pressure curves are derived from fluid-substituted fully water-saturated T_2 distributions and compared to mercury injection capillary pressure (MICP) measurements. Capillary pressure curves derived with the PSDFS method agree well with MICP measurements.
Table of Contents

List of Tables ...9

List of Figures ..10

Chapter 1: Introduction ...11

Chapter 2: Theory ...14

 2.1 Pore-size-dependent fluid substitution method...14

 2.2 Calculating the Pc-Sat curve ...15

 2.3 Fluid substitution joint inversion method ...17

 2.4 Workflow ..20

Chapter 3: Methods ...22

 3.1 Experiment ..22

 3.1.1 Sample Preparation ..22

 3.1.2 MICP Measurements ...22

 3.1.3 NMR Parameters and Measurements...23

 3.2 Inversion ...24

Chapter 4: Results ...25

Chapter 5: Discussion and Conclusions ..28

 5.1 Discussion ...28

 5.2 Conclusions ...29

Acronyms ...30

Symbols..31

References..33
List of Tables

Table 1: Description of the Berea sandstone samples.................................22
Table 2. Experimental NMR parameters. ..23
List of Figures

Figure 2.1: A step-function thin-film model. T_2 values of the x-axis correspond to T_2 values of the pores at full water saturation; S_w^* is the pore water-saturation as function of pore-size ($r = T_2 \rho$); S_w^0 is the individual pore water-saturation above the cut off value T_2c; and S_w is the water saturation for all pores (Medellin et al., 2019) ..15

Figure 2.2 Workflow for calculating the capillary pressure vs saturation curve using a joint-inversion pore-size-dependent fluid-substitution method. (Top) fluid substitution is applied to two partially water-saturated T_2 distributions to obtain (middle) a water-saturated T_2 distribution, which is then converted to (bottom) a Pc-Sat curve ..21

Figure 4.1 Magnetization T_2 decay of: (solid blue) the sample at $S_w=38\%$, and (solid red) the sample at $S_w=84\%$, (solid black) a fully water-saturated sample, (dash blue) the fluid-substituted T_2 distribution from $S_w=38\%$, and (dash red) the fluid-substituted T_2 distribution from $S_w=84\%$.25

Figure 4.2 T_2 distributions of: (solid blue) the sample at $S_w=38\%$, (solid red) the sample at $S_w=84\%$ (solid red), (dashed blue) the fluid-substituted T_2 distribution from $S_w=38\%$, and (dashed red) the fluid-substituted T_2 distribution from $S_w=84\%$. ..26

Figure 4.3 Pc-Sat curves derived from: (solid blue and solid red) two MICP measurements, (dash blue and dash red) fluid-substituted T_2 distributions obtained through PSDFS joint inversion, (dotted blue and dotted red) the original partially water-saturated T_2 distributions, and (dotted black) the fully water-saturated T_2 distribution ..27
Chapter 1: Introduction

Capillary pressure vs saturation (Pc-Sat) curves are commonly measured in the laboratory through MICP, porous plate, or centrifuge methods. These methods, however, are expensive and time-consuming because they must be performed under restrictive laboratory conditions.

NMR-based methods have been proposed as alternative procedures to estimate Pc-Sat curves. There are, in general, two approaches for calculating Pc-Sat curves from NMR T_2 distributions: empirical approaches where the cumulative NMR porosity is calibrated to match the Pc-Sat curve, and physical approaches where physical models are used to convert the NMR T_2 distribution into a Pc-Sat curve.

In empirical approaches, the resemblance of the shape of the Pc-Sat curve and the cumulative T_2 distribution is used to calculate the Pc-Sat curve (Xiao and Zhang, 2008; Gao et al., 2011; Xiao, et al., 2016a; Xiao, et al., 2016b). Although these methods work well for rocks with uniform throat-size distributions, they lack physical support and can require substantial data to calibrate.

In physical approaches, the Pc-Sat curve is derived from the NMR T_2 distribution using petrophysical models. This is possible because both the Pc-Sat curve and the NMR T_2 distribution depend on the pore-space geometry; the former depends on the pore-throat-size distribution, while the latter on the pore-size distribution. Thus, in order to estimate Pc-Sat curves from NMR T_2 distributions, a relationship between pore-size and pore-throat must be used. Several relationships have been proposed but here the simplest, a linear relation, is chosen (Volokitin et al., 2001; Arogun and Nwosu, 2011; Raheem et al., 2017; Kadkhodaie et al., 2019).
In most cases, pore geometry is considered cylindrical or spherical. However, these geometries cannot account for pendular water present in partially saturated rocks. A triangular tube pore geometry has been introduced to improve the relationship between pore- and throat-size distributions for capillary pressure calculations (Grattoni et al., 2003; Mohnke et al., 2015; Hiller and Klitzsch, 2018).

NMR T_2 distributions can be used to calculate Pc-Sat curves only in single-fluid saturated rocks, for only then can they be interpreted as pore-size distributions and used to calculate Pc-Sat curves. When hydrocarbon is present, a correction to remove the hydrocarbon effect must be applied. Volokitin et al. (2001) and Altunbay et al. (2001) removed the hydrocarbon effect from T_2 distributions before using them for Pc-Sat curves derivations. However, Volokitin’s method needs an empirical relationship between irreducible water saturation and the geometric mean of T_2 that must be calibrated with laboratory measurements.

Minh et al. (2016) extended Volokitin et al.’s (2001) method and combined it with factor analysis, where they decomposed the T_2 distributions into factors whose functional form are log-normal distributions. Unfortunately, not all T_2 distributions can be decomposed as a sum of log-normal distributions. Moreover, the major drawback of this method is that to calculate the fully water-saturated T_2 distribution, it requires the logarithmic T_2 mean of the fully water-saturated T_2 distribution, which we do not know a-priori and we are attempting to calculate, i.e., we must know a-priori something we can only know a-posteriori.

Medellin et al. (2019) proposed a pore-size-dependent fluid substitution method that does not require knowing any a-posteriori quantities a-priori. However, it requires exact knowledge of the contribution to the magnetization decay of the bulk hydrocarbon, which implies knowing a-priori the T_2 bulk value and total hydrocarbon pore volume.
In this report, the method presented in Medellin et al. (2019) is extended to develop a PSDFS joint inversion method so that we can prescind of the hydrocarbon parameters. Then, the fluid-substituted T_2 distribution at full water saturation is used to derive the Pc-Sat curve and compare it to those obtained from MICP measurements.
Chapter 2: Theory

2.1 Pore-size-dependent fluid substitution method

We use the method developed by Medellin et al. (2019), which we briefly outline below.

Assuming a perfectly water-wet rock saturated with water and hydrocarbon, the first step consists of subtracting the bulk hydrocarbon contribution to the magnetization decay, \(\mathbf{m}_{\text{Bhc}} \), from the water-hydrocarbon magnetization decay, \(\mathbf{m}_{\text{whc}} \), and obtain the hydrocarbon-depleted magnetization decay, \(\mathbf{m}_{\text{hcd}} \), given by

\[
\mathbf{m}_{\text{hcd}} = \mathbf{m}_{\text{whc}} - \mathbf{m}_{\text{Bhc}},
\]

(2.1)

where \((\mathbf{m}_{\text{whc}})_t = m_{\text{whc}}(t) \). We assume that the bulk hydrocarbon contribution can be completely calculated, i.e., that we know the \(T_2 \) bulk value of hydrocarbon, as well as the fluid volume. Next, we calculate the \(T_2 \) distribution, \(u_{\text{hcd}} \), of the hydrocarbon depleted magnetization decay by inverting

\[
\mathbf{m}_{\text{hcd}} = K_{\text{hcd}} u_{\text{hcd}},
\]

(2.2)

where \((K_{\text{hcd}})_{ij} = e^{-t_i/T_{2\text{hcd},j}} \). Fluid substitution is achieved by transforming the \(T_2 \) value of each partially water-saturated pore to a larger \(T_2 \) value corresponding to a fully water-saturated pore using the transformation

\[
\frac{1}{T_2^{(f)}} = \frac{S_w^{*(i)}}{S_w^{*(f)}} + \left(1 - \frac{S_w^{*(i)}}{S_w^{*(f)}}\right),
\]

(2.3)

where \(T_2^{(f)} \) is the \(T_2 \) value at the final saturation state, \(T_2^{(i)} \) is the \(T_2 \) value at the initial saturation state, \(S_w^{*(i)} \) and \(S_w^{*(f)} \) is the pore-size-dependent water saturation value at the initial and final states, respectively, and \(T_{2\text{Bw}} \) is the \(T_2 \) value of bulk water, which we set to 2511 ms. We use the step-function thin-film model as our pore-size-dependent water saturation distribution, which is defined as
\[S^*_w = \begin{cases}
1 & T_2 \leq T_{2c} \\
S^*_w & T_2 > T_{2c}
\end{cases} \]
(2.4)

and illustrated in Figure 2.1. All pores with radius \(r < T_{2c} \rho \) contain irreducible water and remain fully water-saturated, while pores with \(r > T_{2c} \rho \) contain thin water films. If we define the pore-size-dependent saturation matrix as

\[
(S^*_w)_{ij} = \text{diag}(S^*_w(T_{2j})) ,
\]

(2.5)

then the \(T_2 \) components of the water-saturated \(T_2 \) distribution, \(u_{ws} \), are given by

\[
u_{ws} = (S^*_w)^{-1} u_{hcd}.
\]

(2.6)

Figure 2.1: A step-function thin-film model. \(T_2 \) values of the x-axis correspond to \(T_2 \) values of the pores at full water saturation; \(S^*_w \) is the pore water-saturation as function of pore-size \((r = T_2 \rho) \); \(S^0_w \) is the individual pore water-saturation above the cut off value \(T_{2c} \); and \(S_w \) is the water saturation for all pores (Medellín et al., 2019).

2.2 Calculating the PC-Sat Curve

First, we assume \(r_{pore} = r_{throat} \), and set the relaxivity of Berea sandstone to \(\rho = 10 \ \mu m/s \). We use the Brownstein and Tarr equation,
to connect the T_2 distribution with the surface-to-volume ratio of the pore. Even though
the step-function distribution can model thin films and is adequate for fluid substitution, it
cannot capture the effect of pendular water, which is crucial to calculate Pc-Sat curves.
Therefore, we use the triangular tube model to calculate the Pc-Sat curve. Assuming the
pore to be a triangular equilateral tube, the surface-to-volume ratio is given by
\[
\frac{S}{V} = \frac{4\sqrt{3}}{L},
\]
(2.8)
where L is the length of the sides of the equilateral triangular pore. A triangular pore will
undergo drainage when the capillary pressure causes the pendular water to reach a critical
radius of curvature, r_c, given by (Monhnke et al., 2015)
\[
r_c = P \left(\frac{1}{2G} + \sqrt{\frac{\pi}{G}} \right)^{-1} = 3L_c \left(\frac{1}{2G} + \sqrt{\frac{\pi}{G}} \right)^{-1},
\]
(2.9)
with
\[
G = \frac{A}{P^2} = \frac{\sqrt{3}}{36},
\]
(2.10)
A being the cross-section area of the triangle, and P the perimeter. The corresponding
capillary pressure is therefore written as
\[
P_c = \sigma \cos \theta \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = \frac{\sigma \cos \theta}{r_c},
\]
(2.11)
where $R_1 = r_c$, and $R_2 = \infty$. The water saturation at this pressure is given by
\[
S_w = \sum_{L_i < L_c} \frac{L_i^2}{\sqrt{3}} + \frac{4}{\sqrt{3}} \sum_{L_i > L_c} \left(3\sqrt{3}r_c^2 - \pi r_c^2 \right) \sum_{L_i} L_i^2,
\]
(2.12)
2.3 Fluid Substitution Joint Inversion Method

The major drawback of Medellin et al.’s (2019) method is that the precise amount of hydrocarbon and its T_2 bulk value must be known a-priori. In practice, it is not always possible to estimate individual hydrocarbon T_2 values nor the total hydrocarbon volume, e.g., when the hydrocarbon and water T_2 peaks overlap. To overcome these difficulties, we propose a pore-size-dependent fluid-substitution (PSDFS) joint inversion method to perform the hydrocarbon correction. The PSDFS joint inversion method needs at least two NMR decay signals at different saturations as input measurements. The joint-inversion is carried out by enforcing consistency between the fluid-substituted NMR T_2 distributions that result from each partially water-saturated data set. This is achieved by solving simultaneously a set of 12 relations in the least-squares sense, i.e., by minimizing a cost function dependent on 12 terms (C_1 through C_{12}) – equal to the number of unknown parameters.

The terms are:

1) C_1 and C_2, terms relating the pore water-saturation to the T_2 cut off in each sample:

\[
C_1 = S^0_{w,1} \frac{T_{2l,1}(T_{2Bw} - T_{2c})}{T_{2c}(T_{2Bw} - T_{2l,1})},
\]

\[
C_2 = S^0_{w,2} \frac{T_{2l,2}(T_{2Bw} - T_{2c})}{T_{2c}(T_{2Bw} - T_{2l,2})},
\]

where T_{2c} is the T_2 cut off value used in the step-function pore-size-dependent water saturation profile, $S^0_{w,1(2)}$ are the water saturation values for $T_2 > T_{2c}$, $T_{2l,1(2)}$ are the T_2 cut off values under which all water is bound water [see Medellin et al, 2019, Eq. (24)], and T_{2Bw} is the T_2 value of bulk water. The subscripts 1 and 2 refer to the sample with partial water saturation 1 and 2, respectively.
2) C_3-C_4, terms relating the total porosity of the sample derived from the pore-size-dependent saturation profile and the overall sample saturation at a given saturation state:

$$C_3 = \sum_k \left(H_{\text{hed},1}^{-1} u_{\text{hed},1} \right)_k - \left(H_{\text{hed},1} \right)^{-1} \sum_k \left(u_{\text{hed},1} \right)_k , \quad (2.15)$$

$$C_4 = \sum_k \left(H_{\text{hed},2}^{-1} u_{\text{hed},2} \right)_k - \left(H_{\text{hed},2} \right)^{-1} \sum_k \left(u_{\text{hed},2} \right)_k , \quad (2.16)$$

where H_{hed} is the pore-size-dependent hydrogen index of the hydrocarbon depleted signal, and $H_{\text{hed}}^{'\text{d}}$ is the overall hydrogen index of the hydrocarbon-depleted signal. They are given by

$$H_{\text{hed}} = S_w^{'\text{d}} H_w , \quad (2.17)$$

$$H_{\text{hed}}^{'\text{d}} = S_w^{'\text{d}} H_w , \quad (2.18)$$

where H_w is the hydrogen index of water, and S_w is the overall water saturation.

3) C_5-C_6, terms equating the pore volume below and above the T_2 cut off value T_{2c}:

$$C_5 = \sum_{k \in T_{2c}} \left(u_{\text{hed},1} \right)_k - \sum_{k > T_{2c}} \left(u_{\text{hed},2} \right)_k , \quad (2.19)$$

$$C_6 = \sum_{k \in T_{2c}} \left(H_{\text{hed},1}^{-1} u_{\text{hed},1} \right)_k - \sum_{k > T_{2c}} \left(H_{\text{hed},2}^{-1} u_{\text{hed},2} \right)_k , \quad (2.20)$$

where the sum in C_5 is over all k's such that $T_{2c} < T_{2c}$, and the sum in C_6 is over all k's such that $T_{2c} > T_{2c}$.

4) C_7 and C_8, terms relating the total porosity of the sample in the same saturation state at different fluid substitution stages

$$C_7 = H_{\text{whe},1}^{-1} \sum_k \left(u_{\text{whe},1} \right)_k - H_{\text{hed}}^{-1} \sum_k \left(u_{\text{hed},1} \right)_k , \quad (2.21)$$

$$C_8 = H_{\text{whe},2}^{-1} \sum_k \left(u_{\text{whe},2} \right)_k - H_{\text{hed}}^{-1} \sum_k \left(u_{\text{hed},2} \right)_k , \quad (2.22)$$
where H_{whc} is the overall hydrogen index of the water-hydrocarbon-saturated signal, given by

$$H_{\text{whc}} = S_w H_w + (1 - S_w) H_{\text{hc}},$$

(2.23)

with H_{hc} being the hydrogen of the hydrocarbon.

5) C_9, a term relating the total porosity of the sample derived from two different saturation states

$$C_9 = H_{\text{whc},1}^{-1} \sum_k (u_{\text{whc},1})_k - H_{\text{whc},2}^{-1} \sum_k (u_{\text{whc},2})_k,$$

(2.24)

6) C_{10}, a term equating the forward models of the fluid substituted distributions from both saturation states

$$C_{10} = K_{\text{ws},1} u_{\text{ws},1} - K_{\text{ws},2} u_{\text{ws},2},$$

(2.25)

7) C_{11} and C_{12}, two terms enforcing consistency between the intermediate stages of fluid substitution

$$C_{11} = K_{\text{whc},2} u'_{\text{whc},2} - K_{\text{whc},2} u_{\text{whc},2},$$

(2.26)

$$C_{12} = K_{\text{whc},1} u'_{\text{whc},1} - K_{\text{whc},1} u_{\text{whc},1},$$

(2.27)

where $u'_{\text{whc},1(2)}$ is the water-hydrocarbon T_2 distribution obtained from the hydrocarbon-depleted T_2 distribution of the other saturation state, $u_{\text{hed},2(1)}$.

These twelve relations are used to find the best fluid substitution parameters: \{\(S_{w,1}^0, S_{w,2}^0, T_{2c}, H_w, H_{hc}, S_{w,1}, S_{w,2}, T_{21,1}, T_{21,2}, T_{2Bhc,1}, T_{2Bhc,2}, f_{hc1}\)\}. Here, $T_{2Bhc,1(2)}$ are the T_2 bulk components of the bulk hydrocarbon, and f_{hc1} is the volume fraction contribution to the total hydrocarbon pore volume of the first hydrocarbon component (assuming the T_2 distribution of the hydrocarbon is doubly peaked).
2.4 Workflow

The workflow is illustrated in Figure 2.2 and consists of two steps. First, fluid substitution is applied to a set of T_2 distributions from a sample at different water saturations (or from similar samples). Self-consistent relations (Eqs. (2.13)-(2.27)) are enforced to obtain the best fluid substitution parameters. Second, we derive a Pc-Sat curve by assuming fast-diffusion, a realistic value for pore relaxivity, and a triangular pore model.
Figure 2.2 Workflow for calculating the capillary pressure vs saturation curve using a joint-inversion pore-size-dependent fluid-substitution method. (Top) fluid substitution is applied to two partially water-saturated T_2 distributions to obtain (middle) a water-saturated T_2 distribution, which is then converted to (bottom) a Pc-Sat curve.
Chapter 3: Methods

3.1 Experiment

3.1.1 Sample Preparation

PSDFS joint inversion is applied to the measurements of two Berea sandstone samples, E7 and E9. The Berea samples are oven-dried first. They are then vacuum-saturated with 5% wt NaCl brine. We use a centrifuge to desaturate the samples to different water saturation levels. The water saturation of Berea E7 and Berea E9 is 0.385 and 0.843, respectively. Next, the samples are put back in the vacuum to saturate them with olive oil. Refer to Table 1 for detailed information on the Berea sandstone samples.

<table>
<thead>
<tr>
<th></th>
<th>Berea E7</th>
<th>Berea E9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (mm)</td>
<td>37.9</td>
<td>37.9</td>
</tr>
<tr>
<td>Length (mm)</td>
<td>36.9</td>
<td>36.9</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.205</td>
<td>0.207</td>
</tr>
<tr>
<td>S_w</td>
<td>0.385</td>
<td>0.843</td>
</tr>
</tbody>
</table>

Table 1: Description of the Berea sandstone samples.

3.1.2 MICP Measurements

Two Berea sandstone samples are cut into 25 mm by 25 mm cylinders. The porosities of the samples are 0.205 and 0.207, respectively. We set the surface tension of mercury at 485 dynes/cm and the advance and receding contact angle at 130 degrees.
3.1.3 NMR Parameters and Measurements

All measurements were acquired with an Oxford Geospec2 NMR spectrometer working at 2.17 MHz using a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The signal to noise ratio for all measurements is above 200. Refer to Table 2 for experimental parameters. The T_2 magnetization decay measurements of the fully water-saturated E7 and E9 samples are acquired before the centrifuge. The T_2 magnetization decays of the water-hydrocarbon-saturated samples E7 and E9 are obtained after re-saturating with olive oil.

<table>
<thead>
<tr>
<th></th>
<th>Water-hydrocarbon saturated samples</th>
<th>Water-saturated samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Berea E7</td>
<td>Berea E9</td>
</tr>
<tr>
<td>S_w</td>
<td>0.385</td>
<td>0.843</td>
</tr>
<tr>
<td>Echo number</td>
<td>14925</td>
<td>18657</td>
</tr>
<tr>
<td>Waiting time (s)</td>
<td>3</td>
<td>3.75</td>
</tr>
<tr>
<td>Inter-echo time (ms)</td>
<td>0.134</td>
<td>0.134</td>
</tr>
<tr>
<td>Scans</td>
<td>48</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 2. Experimental NMR parameters.
3.2 Inversion

The T_2 distributions are obtained through a nonnegative least-squares minimization algorithm (Lawson-Dawson) using 121 logarithmically spaced points between $T_2 = 10^{-2}$ ms and $T_2 = 10^4$ ms. The regularization parameter of the measurement of Berea E7 at $S_w = 38\%$ was chosen using the discrepancy principle, yielding a value of 3.2. Given that the signal-to-noise ratio of the other measurements was comparable, the regularization parameter for the remaining measurements was then fixed at 3.2.

For the joint inversion, we use two NMR magnetization decays of two rock samples at different values of water saturation. The porosities of the two samples differ by 1% and can be considered equal. If the porosities of the two rock samples were very different, a porosity correction would be needed before the joint inversion. We use bounded least squares to minimize the sum of the squares of all the C-terms.
Chapter 4: Results

We apply our PSDFS joint inversion method to two NMR data sets, one from a sample at $S_w=38\%$ and a second one at $S_w=84\%$, and obtain two fluid-substituted NMR T_2 distributions at $S_w=100\%$. Figure 4.1 shows the magnetization decay of the fully water-saturated sample (Data $S_w=100\%$), the partially water-saturated samples (Data $S_w=38\%$ and Data $S_w=84\%$), as well as the resulting fluid-substituted (PSDFS from $S_w=38\%$ and PSDFS from $S_w=84\%$) magnetization decays derived from the partially water-hydrocarbon-saturated data sets. Figure 4.2 shows the corresponding T_2 distributions of the magnetization decays described in Figure 4.1.

![Magnetization Decay](image.png)

Figure 4.1 Magnetization T_2 decay of: (solid blue) the sample at $S_w=38\%$, and (solid red) the sample at $S_w=84\%$, (solid black) a fully water-saturated sample, (dash blue) the fluid-substituted T_2 distribution from $S_w=38\%$, and (dash red) the fluid-substituted T_2 distribution from $S_w=84\%$.

25
Next, we use a triangular tube pore model and Eqs. (2.7)-(2.12) to obtain Pc-Sat curves from fluid-substituted T_2 distributions. The derived Pc-Sat curves (PSDFS from $S_w=38\%$ and PSDFS from $S_w=84\%$) are compared to the ones derived from MICP measurements (MICP) in Figure 4.3. The Pc-Sat curves derived directly from the partially water-saturated and fully water-saturated NMR data sets are also shown in Figure 4.3 for comparison.
Figure 4.3 Pc-Sat curves derived from: (solid blue and solid red) two MICP measurements, (dash blue and dash red) fluid-substituted T_2 distributions obtained through PSDFS joint inversion, (dotted blue and dotted red) the original partially water-saturated T_2 distributions, and (dotted black) the fully water-saturated T_2 distribution.
Chapter 5: Discussion and Conclusions

5.1 DISCUSSION

For the PSDFS joint inversion we used a spherical pore model, while the Pc-Sat curve calculation we used a triangular pore model. There are several reasons why we used two different pore models.

Whereas a triangular pore can readily model pendular water and the effect that capillary pressure has on water saturation, a spherical pore can only model thin films of water and cannot capture the effect of capillary pressure on residual water saturation. This condition makes the triangular pore more suitable for calculating Pc-Sat curves.

However, because the surface-to-volume ratio of all partially water-saturated triangular pores is the same, they have the same T_2 value and thus are not amenable for fluid substitution. A spherical pore model with a step-function saturation profile, on the other hand, can capture the T_2 dependence on pore size. This makes the spherical pore with a step-function saturation profile more suitable for our PSDFS method.

The spherical pore with a step-function water saturation profile does introduce an adverse effect in our PSDFS method, as can be observed in Figure 4.2, where the PSDFS T_2 distributions from both samples exhibit an oscillation at approximately $T_2 = 10$ ms, the one corresponding to the sample at $S_w = 38\%$ being larger. This oscillation is a consequence of the degeneracy of T_2 values between small fully water-saturated pores and large partially water-saturated pores with thin water films. In our PSDFS method, we assume all porosity with $T_2 < T_{2c}$ belongs completely to small water-saturated pores. This approximation is valid at high water saturation, but starts to break down at lower values of water saturation, which explains why samples with higher water saturation produce better fluid-substituted T_2 distributions (see Figure 4.2). Consequently, after
performing the PSDFS joint inversion method, we use the NMR data set of the sample with highest water-saturation level to calculate the fully water-saturated T_2 distribution.

Figure 4.3 shows the Pc-Sat curves measured with MICP as well as those derived from NMR T_2 distributions. We observe that the Pc-Sat curves derived from the fluid-substituted T_2 distributions (PSDFS) not only match the Pc-Sat curve derived from the fully water-saturated T_2 distribution ($S_w=100\%$), but they also yield a better match to the MICP curve than the Pc-Sat curves derived from the uncorrected partially water-saturated T_2 distributions ($S_w=38\%$ and $S_w=84\%).$

The workflow above is limited to water-wet rocks with negligible internal field gradients for which a correlation between pore and throat size exists. Consequently, it is not well suited for complex pore networks with mixed wettability. Additionally, a low signal to noise ratio together with uncertainty in pore and throat size determination due to NMR tool ringing and echo time limitations can impact the determination of Pc-Sat curves.

5.2 CONCLUSIONS

The NMR pore-size-dependent joint fluid substitution method developed in this report enables the calculation of capillary pressure vs saturation (Pc-Sat) curves from partially water-saturated T_2 distributions.

Using a combination of spherical and triangular pore models, we verified that the NMR fluid-substituted-derived Pc-Sat curves show an improved match with MICP measurements over the Pc-Sat curves derived from the partially water-saturated T_2 distributions. Moreover, we showed that the necessary input parameters for fluid substitution can be directly estimated from NMR measurements using a joint-inversion pore-size-dependent fluid substitution method.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhc</td>
<td>bulk hydrocarbon</td>
</tr>
<tr>
<td>Bw</td>
<td>bulk water</td>
</tr>
<tr>
<td>CPMG</td>
<td>Carr-Purcell-Meiboom-Gill</td>
</tr>
<tr>
<td>HCD, hcd</td>
<td>hydrocarbon depleted</td>
</tr>
<tr>
<td>HC, hc</td>
<td>hydrocarbon</td>
</tr>
<tr>
<td>MICP</td>
<td>mercury injection capillary pressure</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>PSDFS</td>
<td>pore-size-dependent fluid substitution</td>
</tr>
<tr>
<td>Pc-Sat</td>
<td>Capillary pressure vs. saturation</td>
</tr>
<tr>
<td>W, w</td>
<td>water</td>
</tr>
<tr>
<td>WHC, whc</td>
<td>water hydrocarbon</td>
</tr>
<tr>
<td>WS, ws</td>
<td>water-saturated</td>
</tr>
</tbody>
</table>
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>cross-section area of a pore</td>
</tr>
<tr>
<td>C</td>
<td>cost function</td>
</tr>
<tr>
<td>f_{hc1}</td>
<td>volume fraction contribution to the total hydrocarbon volume of the first hydrocarbon component</td>
</tr>
<tr>
<td>G</td>
<td>pore shape dependent parameter</td>
</tr>
<tr>
<td>H</td>
<td>pore-size dependent hydrogen index</td>
</tr>
<tr>
<td>\mathcal{H}</td>
<td>overall hydrogen index</td>
</tr>
<tr>
<td>$(i), (f)$</td>
<td>initial state, final state</td>
</tr>
<tr>
<td>K</td>
<td>T_2 kernel</td>
</tr>
<tr>
<td>L</td>
<td>side length of the equilateral triangular pore</td>
</tr>
<tr>
<td>L_c</td>
<td>critical side length of the equilateral triangular pore</td>
</tr>
<tr>
<td>m</td>
<td>T_2 magnetization decay</td>
</tr>
<tr>
<td>P</td>
<td>perimeter of the cross-section</td>
</tr>
<tr>
<td>P_c</td>
<td>capillary pressure</td>
</tr>
<tr>
<td>r</td>
<td>pore radius</td>
</tr>
<tr>
<td>r_c</td>
<td>critical radius of curvature</td>
</tr>
<tr>
<td>$R_{i,2}$</td>
<td>principal radii of curvature of the meniscus</td>
</tr>
<tr>
<td>S_w</td>
<td>water saturation</td>
</tr>
<tr>
<td>$S_{w}^$, $S_{w}^{}$</td>
<td>pore-size-dependent water-saturation distribution scalar, matrix</td>
</tr>
<tr>
<td>S_w^0</td>
<td>water-saturation level of partially saturated pores</td>
</tr>
<tr>
<td>S</td>
<td>surface to volume ratio of a pore</td>
</tr>
<tr>
<td>\overline{V}</td>
<td>surface to volume ratio of a pore</td>
</tr>
<tr>
<td>T_2</td>
<td>transverse relaxation time</td>
</tr>
</tbody>
</table>
\(T_{2c} \) \hspace{1cm} T_2 \) cut off value
\(T_{2l} \) \hspace{1cm} T_2 \) value under which all water is bound water
\(t \) \hspace{1cm} time
\(u \) \hspace{1cm} T_2 \) incremental porosity
\(u'_{\text{whc,1(2)}} \) \hspace{1cm} water-hydrocarbon T_2 \) incremental porosity obtained from the
\hspace{1cm} hydrocarbon depleted T_2 \) incremental porosity of the other
\hspace{1cm} saturation state, \(u_{\text{hed,2(1)}} \)
\(\rho \) \hspace{1cm} surface relaxivity
\(\theta \) \hspace{1cm} contact angle
\(\sigma \) \hspace{1cm} interfacial tension
References

